The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 0 X^3+X^2 0 X^2 0 0 X^2 X^3+X^2 0 0 X^2 X^3+X^2 0 0 X^2 X^3 X^3+X^2 X^3 X^3 X^3+X^2 X^3 X^2 X^3 X^3+X^2 X^3 X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2 X^2 X^2 X^3+X^2 X^2 0 0 X^3+X^2 X^2 0 X^3+X^2 X^2 0 X^3 X^2 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^2 X^3 X^2 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^3+X^2 X^3 0 X^2 X^2 0 0 X^3+X^2 X^2 0 X^2 X^3+X^2 0 0 0 0 0 X^3 X^3 X^3 0 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 X^3 0 X^3 0 X^3 generates a code of length 38 over Z2[X]/(X^4) who´s minimum homogenous weight is 36. Homogenous weight enumerator: w(x)=1x^0+78x^36+352x^38+78x^40+2x^44+1x^64 The gray image is a linear code over GF(2) with n=304, k=9 and d=144. This code was found by Heurico 1.16 in 0.031 seconds.